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A multi-stream laboratory generator was designed and fabricated in a pre-prototype 

configuration which would be potentially suitable for use with a Liquid Droplet Radiator. 

The generator was tested using two orifice arrays; one drilled by NASA Lewis, and the 

other fabricated by Du Pont Precision. Two fluids with viscosities of 1 ~ 1 0 - ~  m'/s (10 

cSt) and 4x10-' m2/s (40 cSt) were also used. Stream speeds were 10, 20, and 30 m/s. 

Angular dispersions of the streams from the 100 orifice Du Pont array were measured and no 

significant variation with stream velocity was found. The 4x10-' m2/s (40 cSt) fluid appears, 

at around fgprad, to have smaller angular dispersion than the I X ~ O - ~  m2/s (10 cSt) fluid. 

However, the resolution obtained when photographing the 4x10-' m2/s (40 cSt) streams 

was much greater than the resolution obtained when photographing the 1 ~ 1 0 ' ~  m2/s (10 

cSt) streams and in retrospect there was a possibility of dissolved gases in the fluid during 

the 10 cSt experiments. Velocity dispersions were also measured. It was discovered that in 

the parameter range that was investigated, the amplitude of the disturbance applied to the 

stagnation cavity is an important parameter in obtaining ultra-coherent streams of droplets. 

It is also presumed that the more viscous fluid requires a higher power to the crystal (larger 

crystal deflection) than does the lower viscosity fluid, although this presumption must be 

verified in future investigations. The velocity dispersions for streams from several positions 

along the 0.13 m orifice array were similar. 

A conceptual design for a 5200 stream generator was completed, incorporating ways 

to generate higher disturbance amplitudes than was possible in the laboratory generator. 

Otherwise the design is similar to that of the laboratory generator. 

2 INTRODUCTION 

An important application for droplet streams in space is the proposed liquid droplet 

radiator (LDR),l which would operate by employing a large number of free-flying droplet 

streams as the radiating element of a heat rejection system for high power space stations. 

A number of techniques for generating droplet streams have been considered2. The method 
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of drop generation which is implemented here is the breakup of a 100 pm diameter capillary 

jet into uniformly separated drops by applying a periodic surface displacement. This study 

is focused on the design of a multi-stream generator which is a module in a pre-prototype 

flight configuration for. use with the LDR. It was designed such that an arbitrary number of 

modules can be joined together to produce the required number of droplet streams for the 

LDR. For example, in order to radiate 10' W of thermal energy, about 10' droplet streams 

are required. 

To maintain efficiency in the proposed applications, it is desirable that droplet collisions 

are minimal, which is realized if the streams of free-flying liquid drops remain parallel, and 

the droplets within each stream remain unagglomerated for the duration of their flight. 

Both issues of stream parallelism and droplet separation are addressed in the design. The 

prevention of intra-stream droplet agglomeration depends on maintaining the uniformity of 

the intra-stream droplet separation over the fight distance and is largely dependent on the 

form of the disturbance applied to the stream. A new method of droplet generation, which 

increases the uniformity of the droplets by up to an order of magnitude compared to the 

conventional modes of droplet generation, is implemented in the design. Both the new and 

conventional modes of droplet stream production will be described in Section 3. 

Stream parallelism is largely a matter of precision manufacturing and hardware design. 

The intrinsic directional stability of a single stream is high, having been measured to be 

typically around f2prad.  This is illustrated by the results shown in Figures 1 and 2. The 

results were obtained by positioning the magnified image of the droplet stream onto a slit 

which was parallel to the stream's axis and just in front of a photomultiplier tube. The 

slit height was arranged to be approximately equal to the diameter of a magnified droplet 

image while its width was much less. In Figure 1, the droplet images were centered on the 

slit. In Figure 2, the edges of the droplet images were positioned close to the slit. The 

fluctuating amplitudes of the droplet signals as seen in Figure 2 compared to Figure 1 give 

a very sensitive indication of the position of each droplet lo,ll and give, in this case, an 

angular dispersion of f lprad.  The stream parallelism is thus primarily dependent on the 

parallelism of the nozzle arrays from which the streams are generated, on nozzle exit surface 
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wetting, on deflections of the orifice plate, and on nozzle clogging. 

The report it3 organized in seven major parts which follow the framework of the con- 

tract. Section 3 gives some background concerning the fluid mechanics, jet instability and 

multi-stream droplet sheets. Section 4 deals with the design of the generator, including 

considerations such as: methods of applying radial stream disturbances, eliminating angular 

deflection of the array when subjected to the maximum load required, eliminating angular 

twist of the array which may result if the surface of the array is not seated properly in the 

generator, and the working fluid selection. Section 5 is concerned with the.fabrication of the 

generator. Section 6 describes the performance, testing and results for the generator oper- 

ating at specified conditions. Section 7 describes the results of an acoustic analysis which 

deals with the generation of stagnation chamber pressure disturbances from nozzle motion, 

and Section 8 deals with the large scale generator design and describes the accompanying 

conceptual design drawings. Finally, a summary of the work done, results obtained, and 

areas in need of further investigation follow in Section 9. 

3 JET INSTABILITY AND MULTI-STREAM DROPLET SHEETS 

In this section the consequences of the droplet speed dispersion observed in the generation 

of droplets from capillary streams are reviewed. Droplet speed dispersion affects intra-stream 

agglomeration of droplets. Also, the requirements placed on a generator by attempting to 

minimize inter-stream collisions due to lack of parallelism are described. 

3.1 Intra-Stream Agglomeration 

Typically, a controlled instability of a fluid stream is introduced by disturbing the stream’s 
3 4 surface with a sinusoidal waveform. Plateau and Savart were the first to observe that when 

a fluid stream is periodically disturbed, the stream breaks into a series of equally spaced 

droplets which are separated a distance corresponding to the wavelength of the disturbance. 

Lord Rayleigh5 developed the linear stability analysis of the unstable jet and found that 

the disturbance on the stream will be unstable, and break into drops if the wavenumber of 

the disturbance is greater than the stream circumference. He showed that the surface waves 
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grow exponentially in time as @‘, where p is the amplification factor. He showed further 

the maximum amplification factor occurred at a nondimensional wavenumber (which is the 

wavenumber of the disturbance multiplied by the radius of the jet) of 0.697 for an inviscid 

fluid. Subsequent to the analysis of Rayleigh, there has been a rich development of linear 

and nonlinear theories which describe the instabilities of the surface waves along with careful 

experiments investigating jet i n ~ t a b i l i t i e s ~ , ~ , ~ .  Most of the theories, with the exception of 

Chaudhary and Redekopp’ , address the same problem: the response of a stream to imposed 

sinusoidal oscillations. Most of the experiments have addressed the problem of the breakup 

distance and the corresponding breakup time of a fluid stream when the stream is perturbed 

with a sinusoidal disturbance and injected into atmospheric conditions. 

Chaudhary and Redekopp imposed on the stream a sinusoidal disturbance with an added 

harmonic, in order to suppress satellite occurrences. Satellite drops are smaller drops which 

may appear in-between the main drops and result from nonlinearities in the breakup process. 

For the application of ink jet printing, the occurrence of s a t a t e  drops is very undesirable. 

Two of the present authors have recently discovered lo a new disturbance waveform 

that dramatically improves the control of the droplet stream configuration and subsequent 

propagation. The technique has been shown to greatly reduce the intra-stream agglomeration 

over the conventional methods of perturbation, Le., a sinusoidal disturbance, or a sinusoidal 

disturbance with an added harmonic. The new method of perturbation is considered a 

desirable feature of an LDR generator design by the present authors. The droplet production 

technique involves the use of an amplitude modulated sinusoidal waveform, and is discussed 

in detail in Ref 11. In brief, the fluid responds to the amplitude modulated disturbance by 

first breaking into droplets which are separated a distance corresponding to the wavelength 

of the fast Gequency of the amplitude modulated disturbance. We call these droplets “carrier 

droplets.” Unlike droplets generated with a conventional disturbance, each carrier droplet 

has associated with it a predictable relative speed. The relative speed is a direct consequence 

of the imposed amplitude modulated disturbance. Thus the disturbance essentially forces 

the carrier droplets in two adjacent half periods of the modulation to coalesce into a single 

drop. These “modulation” drops are measured to be much more stable than drops generated 
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with a pure sinusoidal disturbance. A physical explanation follows. 

We consider all fluctuations of mass and momentum to arise at the break points of the 

fluid stream. If the break point is displaced, then one drop has an excess of momentum, and 

the neighboring drop has a deficit of the same amount of momentum. When the two drops 

coalesce, the fluctuations cancel, leaving the only sources of random fluctuations at the end 

points of the last two drops to merge. Thus the velocity dispersion, which is a measure of 

stream uniformity and is simply the ratio of the standard deviation of the unpredictable 

velocity fluctuations of the drops to the average drop speed, should decrease as 1/N, where 

N is the frequency ratio of the disturbance, or the number of carrier droplets that make up 

one modulation drop. 

Figure 3 illustrates the results of applying an amplitude modulated disturbance to a 

single stream. The velocity dispersion at N=l corresponds to the dispersion generated with 

a conventional waveform. The solid line represents 1/N. 

Since the efficiency of the LDR depends on the high surface area to volume ratio of the 

drops, it is clear that the efficiency is maintained by suppressing unplanned droplet merging 

(see section 3.2). Thus, the new mode of perturbation is employed in the generator design. 

The effect of droplet speed dispersions on agglomeration is illustrated in Figure 4, (from Ref. 

12) where it can be seen that for a typical flight distance of a LDR (50 m) a droplet speed 

dispersion of around lo-* as required to prevent significant (10% of droplets) intra-stream 

agglomeration. 

3.2 Multi-Stream Droplet Sheets 

Consider the following example of a droplet radiator that is N, droplet (or orifice) rows 

thick. The thickness of the sheet in numbers of radiation mean-free-paths is defined as 

where Ad is the nominal center to center spacing of droplets in a stream which in this case is 

also assumed to be the stream spacing in a row and d is the droplet diameter. The sheet’s 

thickness in radiation mean-free-paths is useful to help characterize the efficiency of a droplet 
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sheet as a radiator; for A < 1 the sheet emissivity varies approximately linearly with N, 

or A. A simple calculation is informative. Say the A as defined above is set at 1. Assume 

streams of 100 pm droplets with a center to center separation of 3.5 diameters and thus 

N, “v 16. Now, assume these agglomerate due to drop to drop speed differences within each 

stream. If on the average each drop combines with one other, the center to center distance 

has doubled and the drop diameter has increased by 21/3, lowering A from 1 to 0.8 (note, 

since inter-stream spacing would not change, A changes only due to intra-stream droplet 

spacing and droplet diameters). Reducing A from 1 to 0.8 reduces the sheet emissivity by 

about 20%. If there is one further merging, A=0.65 which reduces the emissivity by 35%. 

Thus, modest amounts of agglomeration over a significant proportion of a sheet’s area could 

have significant effects on the radiated power. 

Similar comments about agglomeration also apply to inter-stream collisions caused by 

the angular dispersion of the nozzles, since for relative collision velocities less than about 2 

m/s, 100 pm droplets tend to coalesce when they collide, at least for near head-on collisions. 

If we define three separate inter-droplet distances, Ad the intra-stream separation, Afi l  the 

geometric separation of the nozzles in one row and A,,, the separation between nozzle rows. 

The droplet number density is given by 

Assume a characteristic mean angular error of 8, in the nozzle alignment. An approximate 

average relative speed of colliding droplets is v d  sin e,, where vd is the speed of the droplets. 

The total collision cross-section is ut = .1r8 where d is the droplet diameter. There is some 

divergence due to  the initial angular dispersion of the streams. Assume a droplet sheet 

initially w, cm thick at  the generator, thus there are w,/Afi2 = N, rows of nozzles. At some 

point z from the generator the number of collisions one droplet experiences in a length dz is 

Integrating, the total number of collisions for one droplet for a flight length L is 

6 



e 

(4) 
?r@N, 2Lsin8, 

N ,  = - m( N, Ag2 + 1) 
2AdAg1 

For d,=2 mad, L=50 m, N,=lO, d=100 pm, and Ad = Agl = Ag2=3.5d, the total number 

of collisions per droplet as the stream travels from the generator for 50 m is N ,  = 5.3. If 

the between-row spacing Ag2 is increased to 0.005 m (50d) Net =2, which relieves the inter- 

stream collision problem considerably, although not completely by any means. Note that 

if is increased to 10d, which may be necessary to prevent the streams influencing each 

other due to wetting of the nozzle exit surface, the total number of collisions per droplet 

becomes N,=0.7. 

There are all sorts of arguments about how much droplet agglomeration is acceptable. 

For the present design it was decided that the generator should provide a sheet with a small 

amount (N, < 1) of agglomeration. A relaxation of this requirement might be possible d t e r  

careful system optimization studies. 

4 DESIGN AND FLUID SELECTION 

e 
4.1 General Design Considerations 

a 

a 

0 

a 

In order to identify fundamental problems associated with a flight capable design, the 

multi-stream generator is designed in a pre-prototype flight configuration. With obvious 

mass saving steps it could be suitable for use with a liquid droplet radiator. In this ap- 

proach, any problems encountered with the operation of the generator provide practical 

design considerations for an actual flight module. 

The most basic decision about the generator configuration has to do with the method 

that is selected to apply stream disturbances. Two possibilities have been examined. The 

first is the use of a fluctuating cavity pressure in the stagnation chamber for the streams 

(“cavity disturbance” mode). The fluctuating disturbance pressure that is superimposed on 

the stagnation pressure causes a periodic variation in mass flow in the streams which leads to 

a disturbance of the stream radii. The second possibility is to apply a disturbance directly 

to the nozzle array. The moving array may directly disturb the stream through viscous 
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effects at the nozzle walls. Also, the moving array can generate a fluctuating pressure in the 

stagnation cavity with the disturbance then being similar to the cavity disturbance mode. 

For reference purposes the moving nozzle case is distinguished by naming it the “orifice 

disturbance” mode. 

Fluid lost due to partially blocked nozzles generating misdirected streams is a highly 

probable failure mode since small but continuous losses of fluid are fatal to the success 

of the LDR. The present generator design was accomplished keeping in mind conceptual 

design solutions for overcoming this problem. A pipe crawler for unplugging and/or plugging 

individual nozzles and a segment isolation scheme for cutting fluid flow to a limited number of 

nozzles using valves in the form of air bags or foam were hypothesized but not implemented. 

The generator design is compatible with the air bag or foam solutions since these were 

considered to be the simplest option. Additional particulate control to minimize nozzle 

plugging is incorporated with large areas of micron level filtering. 

The parallelism of the nozzle array itself must be considered in the design to obtain.the 

optimum stream spacing in order to prevent fluid loss or agglomeration. At present, the best 

orifice arrays that are easily obtainable can produce droplet streams with an angular standard 

deviation of several milliradians. It has been suggested (Ref. 13) that the parallelism of the 

nozzles in arrays may be improved with future studies. 

All of the previous considerations must be integrated with the requirements of supplying 

a sufficient quantity of fluid with a minimum pressure drop over distances of typically 50 

meters in a minimum mass device. In the design the assumption was made that fluid would 

be supplied at approximately working pressure; another option would be a high pressure 

supply system with local delivery by pressure regulators to the radiator modules. In the 

latter case our design would change somewhat, but not in any important way as far as the 

details of the stream generation are concerned. 

4 

4 

4 

4 

4 

4.2 Generator Design Details 

The generator has been designed such that many modules may be connected in order 

to produce the desired number of streams for the Liquid Droplet Radiator. A conceptual 
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schematic of several connected generator modules is illustrated in Figure 5. To summarize 

the design configuration, micron filtered fluid reaches each orifice array through the fluid sup- 

ply duct. The height of the duct is chosen so that the pressure drop over several connected 

modules is minimal (other considerations such as total fluid mass are important considera- 

tions which enter into the choice of the supply duct size but must be made by optimizing the 

entire LDR system). A filter plate with a pore size of 2-3 pm separates the fluid stagnation 

chamber from the fluid supply duct. In the event of misdirected streams, the actual flight 

model can employ the segment isolation scheme by inflating an air bag or injecting foam into 

the stagnation chamber of a module. The generator design is capable of holding five orifice 

arrays which are each 0.13 m in length. Each orifice is 100 microns in diameter so that for 

a 5 diameter stream spacing with end clearances a single array contains 1250 orifices. For 

preliminary testing a single array 0.066 m in length was used with orifice separations of 5 

and 10 nozzle diameters. For final testing, a 0.13 m array with 100 orifices was studied. 

We have examined two methods of applying an amplitude modulated disturbance to initi- 

ate the radial instability of the stream. The first method considered is to form a disturbance 

in the stagnation cavity by inserting an isolated piezoelectric crystal under the filter plate. 

In this case, it is desirable to isolate the crystal from the structure in order to inhibit any un- 

wanted structural vibrations. The crystal must also be shielded from the fluid since the fluid 

in the liquid droplet radiator will be sufficiently hot to exceed the Curie point of the crystal. 

To attain a velocity dispersion around it has been found that pressure fluctuations (in 

the form of an amplitude modulated waveform with a high frequency ratio) of several percent 

of the stagnation pressure are required for 40 cSt fluid1'. To reach these levels while using 

the cavity disturbance mode of operation requires using a crystal that is large compared to 

the separation between the crystal and the orifice or to operate at conditions corresponding 

to a cavity resonance. The second mode of stream perturbation relies on nozzle motion. 

In this case, the piezoelectric crystal is mounted on the exit face of the orifice array. It 

is necessary to design the oscillating orifice assembly such that excessive vibrations are not 

introduced into the structure. An advantage associated with orifice disturbance mode is that 

it is easier to have the fluid cavity only about 0.01 m high while still supplying sufficient 
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fluid to the orifice array. Also, the crystal does not come in direct contact with hot fluids. 

In this mode of operation the stream disturbance originates from the pressure field at the 

surface of the vibrating orifice array and from the direct influence of mechanical motion of 

the orifice. 

Both methods of perturbation application have been tested and yield similar results. Fig- 

ures 6 and 7 illustrate the results of the uniformity of single streams of fluid when perturbed 

with the cavity disturbance mode (Figure 6) and the orifice disturbance mode (Figure 7) 

for streams of 1 ~ 1 0 - ~  m2/s (10 cSt) DC-200 fluid. Figures 6 and 7 were obtained with a 

conventional sinusoidal disturbance applied to the fluid stream. Since the two modes of 

operation give similar results, and due to the advantages described, the orifice disturbance 

mode of operation has been incorporated into the generator design. Figure 8 illustrates an 

enlarged cross-section of the generator module showing the piezoelectric crystal and nozzle 

arrangement chosen. 

The orifices have been formed directly in the oscillating assembly shown in detail in Figure 

9. For operation, the piezoelectric crystal is bonded onto the exit face of the orifice array. The 

crystal and array configuration are placed onto a ceramic insulating seat. Power is provided 

to the crystal through a wire which feeds through the ceramic and onto a brass washer which 

lies between the ceramic insulator and the piezoelectric crystal. The assembly was designed 

such that the angular deflection due to bending of the orifice array when subjected to a 

load of 1 . 0 3 4 ~ 1 0 ~  Pa (150 psi) is less than 5 prad. The angular twist of the array, which 

may result if the surface of the crystal and the surface of the ceramic insulating seat are not 

parallel, was calculated to be significantly less than one 1 mrad. Careful attempts have been 

made to make the joining parts parallel. 

4.3 Fluid Selection 

Performance testing of the multi-stream generator was required with the use of two 

different fluids having viscosities of 1x10'' and 4x10-' m2/s (10 and 40 cSt). Original plans 

called for the use of DC-200 at the 1 ~ 1 0 - ~  (10 cSt) viscosity, and DC-704 at 4x10-' (40 

cSt). Both fluids are silicone based low vapor pressure diffusion pump oils. DC-200 has the 
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convenience of being available in a variety of viscosities, and it is considerably less expensive 

than DC-704. However, the use of two fluids with as wide a variety in surface tension as 

possible was desirable. The surface tension of DC-704 is about twice that of DC-200, thus 

the two aforementioned fluids were chosen for use with the generator. 

After testing the generator with the lxlO-’ (10 cSt) DC-200, and switching to the DC- 

704, several practical problems were encountered. The most significant was that the two 

fluids do not mix with each other. We found the DC-704 contained a suspension of the 

residual traces of DC-200 left in the system. The resulting fluid appeared to have a nonuni- 

form surface tension, and furthermore, data taken with the mixture was not representative 

and is not included in this report. It was necessary to clean the apparatus thoroughly of the 

fluid mixture. This was done by dismantling as much of the system as possible followed by 

kerosene and alcohol purges. For subsequent tests DC-200, at the &lo-’ (40 cSt) viscosity 

was used in lieu of the DC-704. The surface tension is not expected to have a significant 

effect since the growth factor varies as ( U / P ~ ) ’ / ~ ,  where u is the surface tension. The density 

of all these fluids is around lo3 kg/m3 so that there is not a big difference in ( U / P ~ ) ” ~  for a 

factor of two difference in u. 

5 GENERATOR FABRICATION 

Drawings of the generator design were submitted to NASA and approved for fabrication. 

The majority of the generator was fabricated in the USC School of Engineering’s machine 

shop. Two different orifice arrays were made for reasons which are discusssed in Section 6. 

One was fabricated by Du Pont Precision and has 100 orifices, each 100 pm in diameter by 

300 pm long. It was produced from hardenable stainless steel. The orifices were measured by 

Du Pont to be accurate in diameter and roundness to f 2  pm. Perpendicularity of the orifices 

to the lapped reference plane was nominally specified to better than f2 mrad during the 

manufacturing process. The orifices were also nominally specified to be parallel to each other 

to better than f3 mrad. The second array, which was drilled in aluminum by NASA Lewis 

has 4, 100 pm diameter orifices. As shown in Figure 9, array plates are bonded directly to a 

piezoelectric crystal which has the shape of a “race-track.” The array and crystal assembly 
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rest on top of a brass washer, and the entire assembly fits in a ceramic insulating seat. 

Both the ceramic seat and the “race-track” shaped piezoelectric crystal were machined by 

Duramic Products Inc. and Mindrum Precision respectively. Electrical contact is made to 

the piezoelectric crystal by a wire which feeds through the ceramic seat and makes contact 

with the brass washer. 

6 TESTING 

The contract required an investigation of the operation of the droplet generator with a 

0.13 m long, 100 hole array. Test conditions included the use of two different droplet fluids 

of different viscosity and three different stream speeds. 

Two preliminary arrays were tested prior to the machining of the final 0.13 m array in 

order to uncover any problems. Each array assembly was configured as shown in Figure 

9. One array was drilled by NASA Lewis, and contains 53 holes with 10 diameter spacing 

between holes. The array was machined out of aluminum. The second array was machined 

out of stainless steel and was fabricated by Du Pont Precision with the same tolerances as 

described above. It contains 109 holes with 5 diameter spacing between holes. Each array 

is 0.05598 m (2.20 inches) long and the orifices are 100 p m  in diameter. The preliminary 

tests showed that the array which was fabricated by Du Pont produced droplet streams which 

were significantly more parallel than the array drilled by NASA Lewis. However, the angular 

dispersion was great enough with the Du Pont array to prohibit the ready identification of 

particular streams after they had traveled 5.5 m. For this reason, two 0.13 m arrays were 

manufactured for the final testing phase. The first was fabricated by Du Pont Precision 

and contained 100 holes, each 100 pm in diameter. This array was used for testing the 

overall generator performance and the angular dispersion of the array. The second array 

which was drilled by NASA Lewis contained 4 holes and was used for measuring the velocity 

dispersions of the individual streams as a function of disturbance wavenumber. The electric 

power consumed by the array oscillating in the droplet generator was measured. The several 

measurements will be discussed in more detail in Sections 6.2 through 6.4. 
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0.1 Experimental  Apparatus:  Droplet Dynamics Space Simulator 
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The facility in which the droplet streams are generated, measured and observed is the 

Droplet Dynamics Space Simulator, shown in Figure 10. The apparatus is an isolated body, 

suspended from its center of gravity by four vibration isolation mounts which filter motion 

above frequencies of 1 Hz. The main component is a vertically suspended optical bench on 

which a 5.5m long; 0.25m diameter stainless steel flight tube, two diffusion pumps, sensors 

and optics are mounted. Optical access is provided to the tube at its top and bottom ends. 

Recycled, out-gassed fluid is supplied to the multi-stream droplet array mounted at the top 

of the fight tube. A flexible rubber diaphragm is used to separate the high pressure gas 

(which drives the flow) from the droplet fluid. This is necessary since high pressure gas 

dissolves in the fluid, leading to cavitation when the fluid is ejected into a vacuum. 

The piezoelectric crystal which initiates the stream instability is driven by two phase- 

locked function generators that are controlled by a high-stability reference source. The func- 

tion generators are used to provide a stable, amplitude-modulated signal. For a conventional 

constant amplitude sinusoidal signal, only one generator is needed. 

The detector used to image the droplet streams at the lower observation port is illustrated 

in Figure 11. The image of the droplet stream is superimposed onto the receiving slit of the 

detector. The detector essentially consists of a receiving slit which is positioned perpendicular 

to the image of the droplet stream, and just in front of a photomultiplier tube. The shadow 

image is then passed through a cylindrical lens in order to illuminate a large portion of 

the photomultiplier tube’s photocathode. Careful attempts were made in the design of the 

detector in order to capture an accurate representation of the droplet stream profile. The 

design characteristics of the detector are discussed in detail in Ref. 12. 

A schematic of operation is sketched in Figure 12. To measure the uniformity of the 

droplet stream, a light beam is split and sent through the optical access ports. The beam 

is sent through a spatial filter in order to filter out any optical noise due to particulates 

entering the light field. As the droplet stream passes through the light, its magnified shadow 

image is reflected onto the receiving slit of the detector. Each droplet image that passes over 

the slit causes a dip in the light flux received by the slit. The corresponding signal consists 
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of a series of dips representing droplets. The output signal from the photomultiplier tube is 

digitized and recorded with a waveform recorder at selectable rates up to 20 MHz, and the 

resulting digital codes are stored in up to 16k words of memory. Once stored in memory, the 

recorded droplet stream waveform is output in both digital and analog formats and stored 

for later evaluations and measurements by computer. Typically, waveforms consisting of up 

to 400 droplets were captured and analyzed. 

6.2 Overall Generator Performance 

The overall generator performance was measured withathe use of still photography. Pre- 

liminary tests were made with two small orifice arrays as discussed previously. One array 

had 53 holes with a 10 droplet diameter spacing, and the other had 109 holes spaced 5 

droplet diameters apart. No significant differences were found in the performance of the two 

arrays, or interactions between the streams due to surface wetting. Final testing was done 
4 

4 

with two 0.13 m arrays; one with 100 holes which was fabricated by Du Pont Precision, and 

one with four holes used for velocity dispersion measurements which was drilled by NASA 

Lewis. Figure 13 is a photograph of the 0.13 m, 100 hole array in operation. In this par- 

ticular photograph, the droplet fluid is DC-200 at 4 X l O - '  m2/s (40 cSt), and the stream's 

speed was 40 m/s. Similar photographs were taken for the other conditions. The specifics 

of the angular dispersion and the velocity dispersions of the streams will be discussed in the 

following sections. 

4 

4 

6.3 Angular Dispersions 

The angular dispersion of the 100 hole array was measured with the following method. 

First, a laser sheet was created which was several centimeters wide, several millimeters thick 

and spanned the horizontal distance of the observation chamber. By allowing the droplet 

streams to travel through the laser sheet in an approximately perpendicular direction, and by 

photographing the resulting forward scattering, we have been able to determine the angular 

spread of the array of streams. For data reduction, a photograph was taken of a grid which 

was placed in the chamber at the same orientation as the laser sheet. Deviations of the 
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stream's displacements from the centerline of the array were measured by superimposing the 

images of the scattered light patterns from the streams and the grid. A standard deviation of 

the angular spread was found by measuring the deviation of each stream from the centerline, 

forming an average displacement and calculating the standard deviation. Table 1 gives the 

results of the angular dispersion measurements at the indicated conditions. All measurements 

are in mrad. The result indicated with an asterisk is an estimated standard deviation, for 

in this case trouble was encountered separating the images of the scattered light due to 

overexposed film. Note that the angular dispersion that was calculated is for the direction 

perpendicular to the line of orifices. The higher dispersion observed for the 10 cSt fluid 

has no obvious explanation. Generally it is observed that angular dispersions are sensitive 

to dissolved gas in the liquid. The 10 cSt experiments were the initial experiments in this 

study. It is possible that because they also involved a first use of a new high capacity oil 

recirculation system, some dissolved gas may have been present in these experiments. 

Table I Angular Dispersions Perpendicular to Orifice Row (mrad) for a 109 Stream Array 

0 

0 

II I DC-200, lOcSt I DC-200,40cSt 11 
10 m/s 

20 m/s 

30 m/s 11.5' 8.9 

6.4 Velocity Dispersions 

Both arrays were studied to measure velocity dispersions using both fluids. The unifor- 

mity of a single stream from the 109 hole array with the IxlO-' m2/s (10 cSt) fluid was 

measured and it was found that the stream had a velocity dispersion of 1.25xlO-' when 

perturbed with an amplitude modulated waveform with a frequency ratio of 4:l. A trace of 

this droplet waveform is illustrated in Figure 14. Following this experiment, the NASA four 

hole array was tested (Figure 15). It was only possible to analyze the performance of three 

of the streams, as the fourth orifice was misdirected at an extreme angle, and the apparatus 
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could not be maneuvered enough to locate it. Figures 16, 17, and 18 illustrate the array 

performance, where orifices #1, #2, and #3 are in consecutive order as they appear on the 

array. It can be seen that all orifices tested respond generally in the same way. For these re- 

sults, the streams were perturbed with an amplitude modulated waveform with a frequency 

ratio of 4:l. When the streams were perturbed with a conventional sinusoidal waveform 

they were observed to be less uniform. Only the data points generated with an amplitude 

modulated waveform with a frequency ratio of 4:l were saved and are included in Figures 

16 through 18. From the figures it can be seen that the velocity dispersions are as high as 

lxlO-'. The measurements are not as low as the measurement obtained with the Du Pont 

array. This finding was investigated in a preliminary way and it appears that the difference 

in uniformity was due to a difference in the perturbation amplitude which was applied to 

the stream. When the NASA Lewis array was tested, the power amplifier was unserviceable. 

Unfortunately, use had to be made of an amplifier which outputs - 10 V. The amplifier that 

was used to test the Du Pont array typically outputs - 70 V. In retrospect, it appears that 

the disturbance amplitude was in a region where higher voltage to the piezoelectric crystal 

is necessary for obtaining ultra-coherent streams of drops (with velocity dispersions near 

1 ~ 1 0 ' ~ )  from the array, when using the orifice disturbance mode of operation along with 

an amplitude modulated disturbance at large frequency ratios. We are currently studying 

the effects of absolute amplitude of the driving perturbations on the velocity dispersion of 

the breakup of a single stream of drops. At this stage in the investigation, it appears that 

the amplitude plays a significant role in the velocity dispersion of the drops for the range of 

disturbance amplitude that was employed in the tests described previously. 

Following the work with the lxlO-' m2/s (10 cSt) fluid, a switch was made to the 4x10-' 

m2/s (40 cSt) fluid. DC-200 was used in both cases as discussed in Section 4.3. For this 

work, the amplifier which output - 70 V was available for all measurements. Measurements 

with both the Du Pont array and the NASA Lewis array were similar. Figures 19, 20, and 

21 illustrate the NASA array performance with the 4X10-5 m2/s (40 cSt) fluid. For each 

data point, the streams were perturbed with an amplitude modulated disturbance with a 

frequency ratio of 4:l .  For reasons that are not known it was only possible to test the 
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array at 20 m/s and at 30 m/s when using the 4XlO-’ m2/s (40 cSt) fluid. The 10 m/s 

stream’s velocity dispersion was very high, which was unexpected. It can be seen that the 

velocity dispersions for the 20 and 30 m/s are for the most part near a few times lo-‘, 

which by the current standards at  USC (when using an amplitude modulated disturbance 

at large frequency ratios) are considered to be about an order of magnitude high. One 

plausible explanation for these results is that the orifice disturbance mode of operation had 

not previously been tested with a highly viscous fluid. In other studies at USC, highly viscous 

fluids were tested only while using the cavity disturbance mode. It is believed that the cavity 

disturbance mode as it was used in that work provided a greater amplitude disturbance than 

the orifice disturbance mode. A greater disturbance amplitude may be necessary to breakup 

the more viscous fluids into droplet streams with very low velocity dispersion (see following 

section on acoustic analysis and resulting design implications). 

0.5 Power Measurement 

0 

0 

0 

0 

Power measurements were made for typical generator operating conditions of 100 psi, 

and 50kHz carrier frequency, 40 cSt fluid and the 0.13 m long orifice array. The measure- 

ments were obtained by observing voltage drops using a differential plug-in amplifier for an 

oscilloscope and a 6Sl resistor in the supply line to the piezoelectric crystal. The resistor 

was about 0.5 m from the crystal. The supply line was loaded with a lO‘Sl shunt to ground 

between the 6R resistor and the power supply. Simultaneous measurements using a dual 

beam oscilloscope were made of the applied voltage and the current passing through the 6 

Sl resistor. It was observed at 50 kHz that the voltage and current were in- phase and corre- 

sponded to an average power consumption of 6.5 watts. This compares to an average current 

flow of about 0.05 amps required to charge the capacitor (the RC time constant of the 652 

piezoelectric circuit is less that lO-’s). The power required to move a piston against 100 

psi from the minimum to maximum deflection of the crystal (about 0.2 pm) 50 x lo3 times 

a second is around 8 watts, assuming that the energy injected into the fluid is completely 

dissipated. 

17 



6.6 Satellites 

For streams disturbed with an amplitude modulated disturbance the existence of satellites 

is not expected after the streams have coalesced to modulation drops. For the measurements 

done in this study no satellites were observed. 

Parameter 

L, 

Lv 

L z  

7 ACOUSTIC ANALYSIS 

Typical Value 

0.10 m 

0.10 m 

0.02 m 

In order to help understand the mechanisms by which a disturbance is applied to the 

droplet stream from the generator, both theoretical and experimental studies have been 

completed. The theoretical work is detailed in Section 7.1 and the experiments in Section 

7.2. 

100 kg/m3 I l l  

Table 2 

Parameter Values Used in the Acoustic Analysis 

I II 

0.01 m 

0.01 m 

0.1 x W 6 m  

U 14.16 x lo-' m2/s 

7.1 Theory 

Consider a rectangular cavity with characteristic dimension L,, L,, L, subjected to 

external forcing by means of a rectangular piston with side lengths C,, e,. The geometrical 
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configuration is sketched in Figure 22. The parameters E and w denote the amplitude and 

circular frequency of the excitation, respectively. The medium is assumed to be homogeneous 

and at rest, of density po and speed of sound c. Kinematic viscosity is Y, dilatational viscosity 

is 7 .  Typical values of-interest for all these parameters are listed in Table 2. The main purpose 

of the present calculation is to obtain the value of the perturbation pressure at the center of 

the piston as a function of forcing frequency and of the other parameters in the problem. 

7.1.1 Preliminary Assumptions: Effects of Viscosity 

According to classical results 14,15,16 a plane wave ei(kt-ot) moving in a duct of cross- 

sectional length scale L filled with a viscous and heat-conducting fluid, is characterized by 
e 

the following complex wavenumber k 

0 

e 

2 

+ L)E ( 5 )  ++-E- Po" c3 ' 
w l + i  7-1 (vw)1/2 i 7-1 
c f i  f i  CL 

k x - + -(I+ -) 

where y is the ratio of specific heats and Pr the Prandtl number. In this expression, the first 

term is the classical propagation term of inviscid sound waves in an unbounded medium. 

The second term represents attenuation and dispersion effects due to the presence of viscous 

Stokes layers (unsteady perturbation boundary layers) at the walls of the tube. The thickness 

of these layers is of order 6 - [ ( ~ v ) / w ] ' / ~ .  Finally, the third terms accounts for dilatational 

attenuation~of acoustic waves in the bulk of the fluid. We shall assume that the excitation 

frequency is such that the hierarchy of these various terms is respected, namely 

0 

e 

VW2 (vw)1/2 
< CL (6% b) 

(vw) ' / f  0 < - and - 
C L  C c3 

Under these conditions, dissipation effects can be neglected altogether. Thus the range 

of frequencies of interest is restricted to be 

V 
(7) 

The first inequality states that viscous dissipation in the Stokes layers is negligible whereas 

the second inequality states that bulk dissipation is negligible compared to Stokes layer 
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dissipation. For the values listed in Table I, it is therefore legitimate to neglect at leading 

order viscous damping, provided the excitation frequencies are chosen within the range 

4 . 1 0 - ~  a a io6 

These conditions appear to be satisfied in practice and we shall neglect viscous dissipation 

effects. 

7.1.2 Mathematical Model: 

The governing equations of linear sound propagation in a fluid medium at rest are given 

by 

g + pov . Q = 0 

f3v 
P o x  = -VP (9) 

p = c2p ( 1 0 )  

where p,  p and 

boundary conditions are 

denote the perturbation density, pressure and velocity, respectively. The 

Q ii = o on all walls except piston, (W 

In the above, the piston displacement Zp = 

of the perturbation velocity is denoted by w .  

and Zis the unit normal. The 2-component 

It is convenient to reformulate the entire problem in terms of perturbation pressure only. 

One readily obtains the following system: 

I 

4 
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V, . n' = 0 on all walls except piston 

2 = po~w2e-'"*(13b) 
a z  

on 
a 

a 

e 

7.1.3 Normal Modes of Rectangular Cavity 

The natural modes of the cavity can be sought in the absence of external excitations. We 

look for solutions of the form 

p = $ ( ~ , y , z ) e - ' ~ ~  

After substitution into the previous system, one obtains the eigenvalue problem 

where k = w / c  is the unknown eigenvalue 

Resonances can be determined by a straightforward separation-of-variable analysis. The 

eigenfunctions are found to be 

and the corresponding eigenvalues, or resonance frequencies, are given by 

e 

0 
The indices n, ,ny,n,  may take all zero or positive integer values. The eigenfunctions are 

endowed with the following orthogonality properties: 
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For simplicity we have denoted by n or m distinct triads (n,, ny, n,). The symbol 6,, is the 

Kronecker delta 

1 m = n  

0 m # n  
amn = 

and the quantity An is such that 

1 1 n,=O 

EnzEnyEns 2 n,>O 
An = 

The quantity V is the cavity volume V = L,L,,Lz. 

a 

7.1.4 Green’s Function of Rectangular Cavity: 

For future use, it is necessary to obtain the impulse response (or Green’s function) of 

the cavity when it is subjected to a delta-function excitation of frequency w at an arbitrary 

location Fo. The mathematical problem of interest is then 

V2Gw + k2Gw = 6(F-  Fo)  (21) 

VG - n’ = 0 on all walls 

Upon assuming an expansion of G, in the previous eigenfunctions, one generates the solution 

As before, triads (n,, ny, n,) are given the collective name n. Note that the above impulse 

response blows up at the resonant frequencies wn = ckn, as expected. 

1 

1 
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7.1.5 Forced Response D u e  to Piston Motion: 

One may now tackle the original problem at hand specified by equations (12)-(13). 

Steady-state solutions are sought in the form 

P ( Z , Y , Z , t )  = Pw(z ,Y ,Z)e- iwt  

where w is the excitation frequency specified in (9b). The unknown p ,  satisfies 

V 2 p w  + k2p,  = 0 

(23) 

(24) 
a 

V p w  n' = 0 on all walls except piston surface (254 

0 

0 

(h 

0 

(25b) 
+ v p ,  - n = poew2 on piston surface s at z = - ~ , / 2  a p w  

an 
- =  

A straightforward application of Green's theorem allows us to relate the values of the pressure 

gradient at  the piston surface to the pressure field p ,  within the cavity. One obtains the 

solution 

Thus the pressure field within V is seen to be due to a distribution of point sources of 

strength 

located on the piston surface S. The total pressure field is simply obtained by superposition 

of all the corresponding impulse responses, as stated in (26). The pressure gradient on S 

is known from (25b) and the Green's function G, has been calculated [see equation (22)] 

previously for an arbitrary source location Fo. After some calculations, one generates the 

pressure field within the cavity: 
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with 

2nmx ) cos(-) 2nny COS[-(% “P + -)] Lz 
2 

* cos( - 
LZ Lv Lz 

and 

1 i = O  

2 i # O  
(29) 

1 
Em En Ep 

Am, = -E ;  = 

As expected, the response blows up if the excitation frequency w coincides with one of 

the resonant frequencies w,,,,~. 

In the low frequency limit w + 0, the general formula (27) simplifies considerably: 

+ O ( W 2 ) ,  w + 0. POE&& c2 
(30) P w ( T 3  = - LzLvLz 

this relation provides a simple scaling relation at excitation frequencies which are far from 

resonance frequencies. It is worth noticing that, in the low frequency limit, the pressure is 

uniform within the cavity, at leading order. 

The pressure pw at the center of the piston is given by 

7.2 Results Based on Acoustic Analysis and Some Experiments 

Programs have been written to display graphically the response curve pw(O, 0, L z / 2 )  given 

by (31) as a function of excitation circular frequency w. Typical results are shown in Figures 

23 and 24. The first few resonances appear to intrude into the frequency range of interest, 

as seen from Figure 23 where one detects the pervading influence w0,1,0 (or wl,O,o) and of 
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w ~ , ~ , ~ .  Figure 24 shows the pressure response in the lower part of the spectrum below the 

1st resonance frequency. The exact location of the resonances is likely to be sensitive to the 

shape of the cavity. The order of magnitude of p ,  outside the resonance regions is likely to 

be fairly insensitive to. the particular shape of the cavity. 

As a check on the validity of the analysis we observed pressures in the stagnation chamber 

using the cavity disturbance technique. The cavity is illustrated in Figure 2 of Ref. 11. The 

predicted cavity pressures as a function of frequency are shown in Figure 25 along with 

several measured pressures. The “cavity” was cylindrical in shape so that the predictions 

are only expected to  be approximate. The piston is a piezoelectric crystal forming one end 

of the cavity (see Figure 2, Ref. 11). The data points are the measured amplitudes of the 

pressure fluctuations in the cavity. Note that the predictions and measurements are in order 

of magnitude agreement. 

Predictions were made for the multi-stream generator and are shown in Figure 26. For 

this case because the area of the moving orifice array (see Figure 9) is relatively smaller 

than in the cavity disturbance mode experiments, the low frequency pressures are smaller 

(see Eqn. 30). Also, due to the configuration of the orifice assembly, significant structural 

vibrations were transmitted and observed, making it impossible to measure cavity pressures 

with our piezoelectric pressure transducer in the multi-stream droplet generator. Relying 

on the prediction it is apparent that in future designs, using the orifice disturbance mode 

of operation, it would be useful to have individual stagnation cavities for each orifice array, 

such that the moving array and its mount form the complete surface area of the bottom 

of each cavity. Such an arrangement will result in maximum pressure being achieved in 

each stagnation cavity. For the present design, simply walling off each moving array would 

increase the pressures and change its frequencies, as shown in Figure 27. 

8 LARGE SCALE GENERATOR DESIGN 

As part of the contract a preliminary design of a nominal 5000 orifice generator segment 

was required. The large scale generator designs are shown in Figures 29 through 33. The 

design is similar to the laboratory generator fabricated for this contract. The orifice distur- 
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bance mode of perturbation was employed in the design because of the advantages described 

in section 4.2. It is believed that any shortcomings found in the results due to the ampli- 

tude limitations of this mode of motion can be overcome by decreasing the stagnation cavity 

volume as described in the previous section. 

The proposed nominal 5000 stream generator segment incorporates walls associated with 

the bottom plate of the generator (see Figure 31). The walls not only serve to reduce the 

volume of the stagnation cavities but act to increase significantly the moment of inertia 

of the bottom plate, thus making the design more efficient from a structural perspective. 

Additionally, divider walls can be added at  periodic intervals as illustrated in Figure 31, 

which changes the resonance characteristics and also increases the structural integrity of 

the bottom plate. The resulting pressure predictions are shown in Figure 28. Note the 

disappearance of the resonant peaks at the lowest frequency. More work needs to be done, 

however, to determine accurately the amplitudes required for highly uniform drops as a 

function of fluid viscosity. 

A schematic of the nominal 5000-orifice droplet generator is illustrated in Figure 29. This 

particular schematic shows a cut-away of the generator, exposing the fluid supply duct, filter 

plate and array assembly. The generator is 0.616 m (24.25 inches) long, and contains 20 

arrays. Figure 30 shows a further cut-away illustrating the generator’s configuration. Figure 

31 shows a top view and a side view of the array holder. The assembly was designed such 

that the angular deflection due to bending of.the orifice array when subjected to  a load’of 

150 psi is less than 5 prad. Figure 32 shows a side view of the assembled generator. Lastly, 

Figure 33 illustrates the orifice array assembly. Each of the 20 arrays can contain in a single 

row 260 orifices which are 100 pm in diameter, at 5 diameter spacings. The mass of the 

generator illustrated in Figure 29 and 31 is about 1.2 gms per orifice (5200 orifices) using 

aluminum for the Structural components. For carbon fiber composite structural components 

the mass is around 0.9 gms per orifice. 
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9 SUMMARY OF RESULTS 
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A multi-stream laboratory generator was designed and fabricated in a pre-prototype 

configuration which would be potentially suitable for use with a Liquid Droplet Radiator. 

The generator was tested using two orifice arrays; one drilled by NASA Lewis, and the 

other fabricated by Du Pont Precision. Two fluids with viscosities of lxlO-' m2/s (10 

cSt) and 4x10-' m2/s (40 cSt) were also used. Stream speeds were 10, 20, and 30 m/s. 

Angular dispersions of the streams from the 100 orifice Du Pont array were measured and no 

significant variation with stream velocity was found. The 4 ~ 1 0 - ~  m2/s (40 cSt) fluid appears, 

at around fgprad, to have smaller angular dispersion than the l ~ l O - ~  m2/s (10 cSt) fluid. 

However, the resolution obtained when photographing the 4x10-' m2/s (40 cSt) streams 

was much greater than the resolution obtained when photographing the I x ~ O - ~  m2/s (10 

cSt) streams and in retrospect there was a possibility of dissolved gases in the fluid during 

the 10 cSt experiments. Velocity dispersions were also measured. It was discovered that in 

the parameter range that was investigated, the amplitude of the disturbance applied to the 

stagnation cavity is an important parameter in obtaining ultra-coherent streams of droplets. 

It is also presumed that the more viscous fluid requires a higher power to the crystal (larger 

crystal deflection) than does the lower viscosity fluid, although this presumption must be 

verified in future investigations. The velocity dispersions for streams from several positions 

along the 0.13 m orifice array were similar. 

A conceptual design for a 5200 stream generator was completed, incorporating ways 

to generate higher disturbance amplitudes than was possible in the laboratory generator. 

Otherwise the design is similar to that of the laboratory generator. 

e 
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APPENDIX I: NOMENCLATURE 

c speed of sound 

d droplet diameter . 

do orifice a nozzle diameter 

G,( r' I F,) Green's functions 

k non-dimensional wavenumber for acoustical analysis 

I C ,  non-dimensional wavenumber for a capillary streams (( X/?rdo)-') 

C,,, dimensions of surface containing the orifice array 

L droplet flight length or characteristic dimensions in acoustic analysis 

Lz,y,z dimensions of stagnation cavity 

n droplet number density 

5 unit normal vector 

N frequency ratio of amplitude modulated waveform 

N,, total number of collisions one droplet experiences 

N, number of rows of droplet streams 

p perturbation pressure 

P, Prandtl number 

T', source position vector 

t time 

V stagnation cavity volume 
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P perturbation velocity 

V d  speed of droplets 

w, thickness of droplet sheet at generator 
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,f3 amplitude growth factor 

7 ratio of specific heats 

A thickness of sheet in radiation mean free paths 

r 

9 dilatational viscosity 

8, angular error of stream alignment 

A center to center spacing of drops, also disturbance wavelength of carrier waveform 

amplitude of orifice array displacement 

A,-J intra-stream separation 

Agl geometric spacing of nozzles 

Ag2 separation between rows 

A, wavelength of disturbance imposed as a capillary stream 

A quantity in acoustic analysis 

u kinematic viscosity 

p perturbation density 

po density of liquid in stagnation cavity 

u surface tension 

ut collision cross-section of droplet 

$,,, ,% ,nz eigenfunction 

w circular frequency 
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DROPLET SIGXATURE 

Figare 1: Dtopld profle trace obtained by positioning the optical slit on the center of the 

droplet stream. 
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Figure 2: Droplet profile trace obtained by positioning the detector on the edge of the droplet 

stream in order to determine the angalat dispersion of the stream. 
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Figare 3: Response of the stream to an amplitude modulated disturbance. N is the k p c n c y  

ratio. N=L corresponds to a conventional constant amplitude sinusoidal vavefonn. 
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Figure 5: Schematic of assembly of s e v e r a l  generator modules. 
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Figure 6: Behavior of a single stream when disturbed with the cavity disturbance mode 

of perturbation. Droplet fluid is DC-200: 1 x lows m3/s (LO cSt), n o d e  diameter is 125 
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Figure 7: Behavior of a single stream when disturbed with the orifice disturbance mode of 

perturbation. Droplet fluid is DC-200: lxl0" m2/s (LO cSt) , n o d e  diameter is 125 microns 
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Figure 8: Schematic of cross-section of generator module illustrating meam of perturbation 

chosen for present design. 
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Figure 9: Schematic of the details of oriiice array assanbly. 
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Figure 10: Schematic of the apparatus used to test the multi-stream droplet generator: 

Droplet Dynamics Space Simulator. 
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e Figure 11: Detector used to obser~e  the droplet a;zeams. 
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Figrue 12: Schematic of optical path and data retrieval methods. 
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Figure 13: Photograph dustrating the generator performance with the 100 hole a.rray which 

w a  manllfactared by Du Pont Predsion. 
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Figuxe 14: Droplet stream waveform (lower trace) and perturbation waveform (upper trace) 

obtained kom the 100 hole Du Pont h a y .  
I 
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Figure 16: Veiodty dispersions as a function of non-dimensional wavenumber for streams 

generated horn orifice +l of the NASA Lewis axray with 1x10'' m2/s (10 cSt) DC-200. 
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Figure 17: Veloaty dispersions as a function of non-dimensional wavennmber for streams 

generated &om orifice #2 of the NASA Lewis arzay with 1x10'' m'/s (10 cSt) DC-200. 
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Figure 18: Velocity disperzio~u as a function of non-dimensional wavenumber for streams 

generated fiom o d c e  +3 of the NASA Lewis array with l x l O - '  mz/s (10 cSt) DC-200. 
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Figare 19: Vdocity dispersions a a function of aon-dimensional wavenumber for streams 

generated from orifice #l of the NASA Lewis array with 4X1O" m2/s (40 &t) DC-200. 
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Figure 20: Vdocity dispersions as a function of non-dimauiond wavenumber for streams 

generated &om orifice #2 of the NASA Lewis auay with 4x10'' mZ/s (40 cSt) DC-200. 
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Figure 21: Velocity dispersions as a function of non-dimensional wavenumber for streams 

guerated from o d c e  #3 of the NASA Lewis array with WO" m2/s (40 cSt) DC-200. 
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Figure 22: General codiguratioa for acoustic analysis. 
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0 Figure 23: Remits of acoustic analysis. 
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Figure 24: Besults of acoustic analysis. 
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Figure 25: Prediction of cavity pressure as a bction of frequency for the cayity disturbance 

mode of operation. Experimental points are absolute values since no documentation of phase 

was made. 
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Figuse 26: Prediction of cavity pressure as a function of ikcquency for the mdti-stream 

generator with a single large cavity. 
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Figure 27: Prediction of cavity pressure as a function of frequency for the generator c o d g -  

uration of five sepaate cavitia; one for each array. 
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Figure 28: Prediction of cavity pressure a a function of &equency for the generator config- 

uration of 20 separate cavities, four cavities to one array. 
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Figure 29: Schematic of nominal 5000-orifice droplet generator. 
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Figure 30: Schematic of generator illustrating configuration. 
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Figare 31: Schematic of top view and bottom view of array holder. 
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Figure 32: End cross-section view of assembled generator. 
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Figure 33: Schematic of orifice anay assembly. 
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